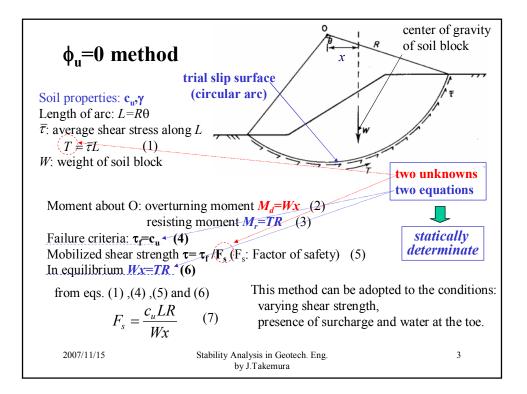
Method of Slices(分割法)

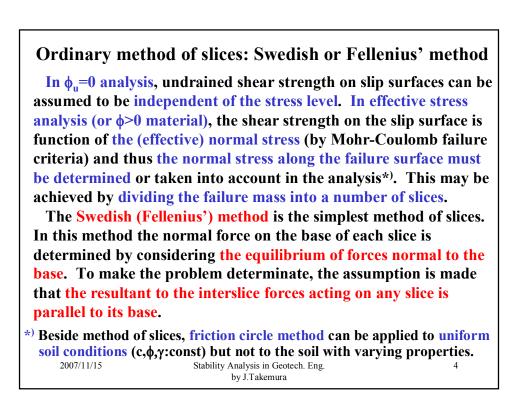
LA, SLM can be applied only to limited conditions, e.g., uniform or simple ground formation and simple ground water conditions, but they can be hardly applied for multiple layered soils and complicated ground water conditions.

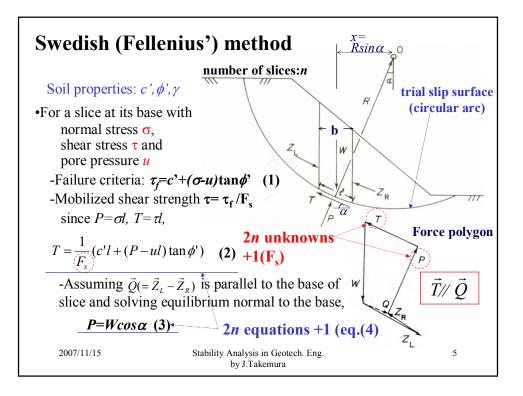
Method of slices (one of LEMs) is one of the most commonly used methods for evaluating the stability of geotechnical structures with complicated conditions, especially for slope stability, from which factor of safety (F_s) is estimated.

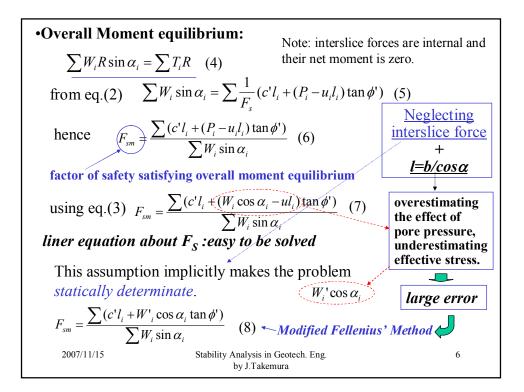
Procedure of method of slices

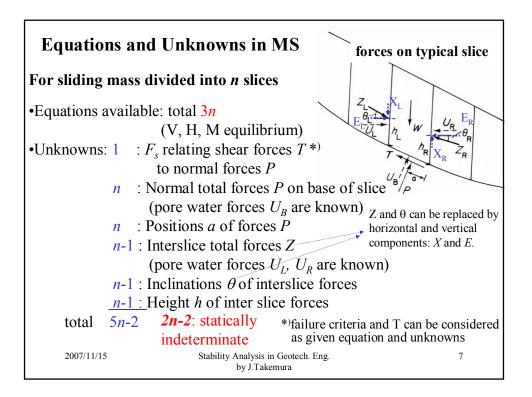
- 1. Assuming trial slip surface
- 2. Dividing slipping block into vertical slices
- **3.** Force and moment equilibrium for each slice and overall moment and force equilibrium
- 4. Factor of safety on shear strength of the trial slip surface

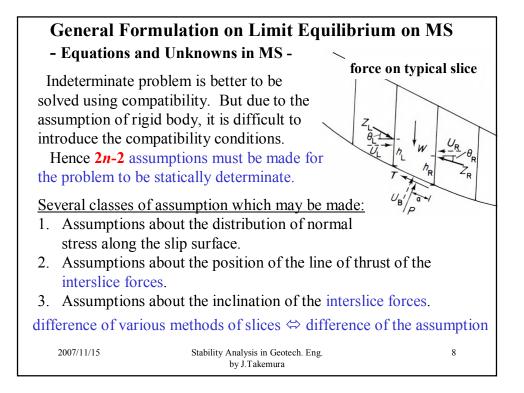

1


5. Finding minimum factor of safety


2007/11/15


Stability Analysis in Geotech. Eng. by J.Takemura


Various methods have been proposed in this type of stability analysis. •Swedish (Fellenius') method •Bishop's method •Jambu's method •Spencer's method •Mogenstern and Price's method **Difference of these methods:** •shape of slip surface (circular or non-circular) •assumption on interslice force (スライス間力の仮定) to determine the normal force Why this assumption is needed? on slip surface of each slice. 2007/11/15 Stability Analysis in Geotech. Eng. 2 by J.Takemura

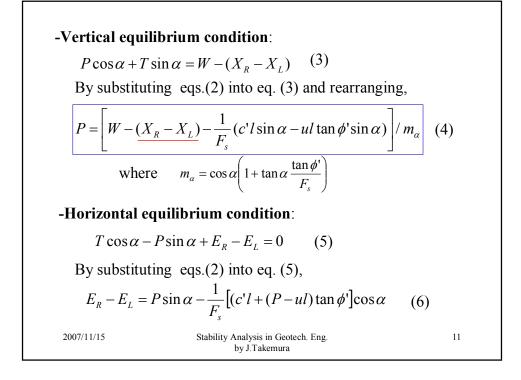


Assumptions in method of slices

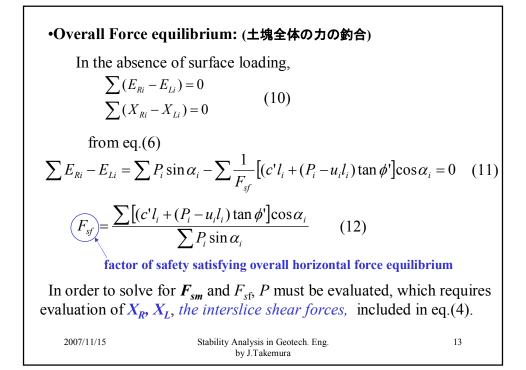
In most methods, P is assumed to act at the center of the base of each slice (Class 1.). This assumption is reasonable providing the slices are thin, and reduces the number of required assumption to n-2.

In many methods, an assumption is made about the inclinations of the interslice forces (Class 3.). But this gives another n-1 assumptions making the problem *over-specified*. This analysis may then be carried out either satisfying overall moment equilibrium or horizontal force equilibrium, yielding two factors of safety, F_{sm} and F_{sf} , which are generally different with this condition.

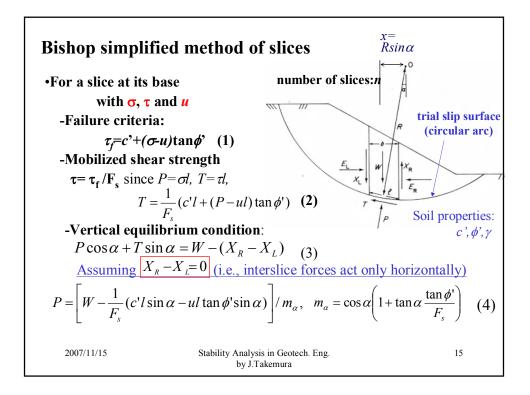
Fredlund and Krahn (1977) have shown the general equations of equilibrium. The formulation is the same for circular and no-circular slip surface, although for the latter a frictional center of rotation is adopted.

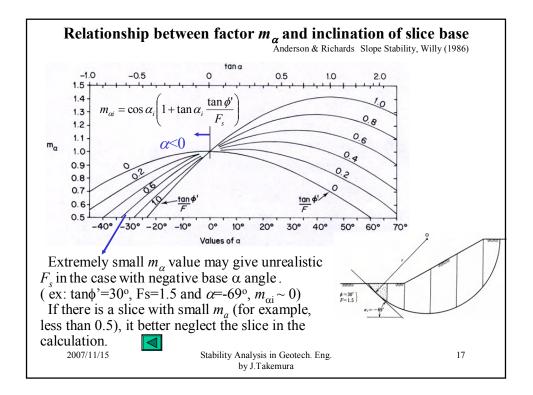

difference of the methods

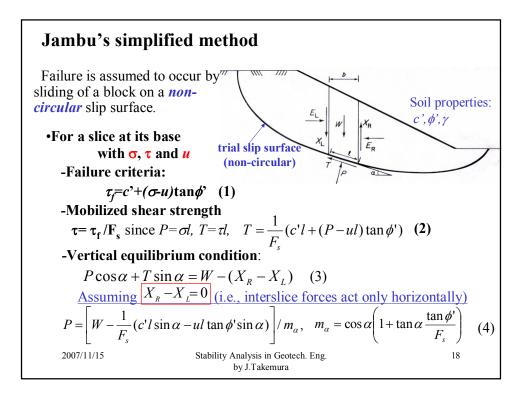
9

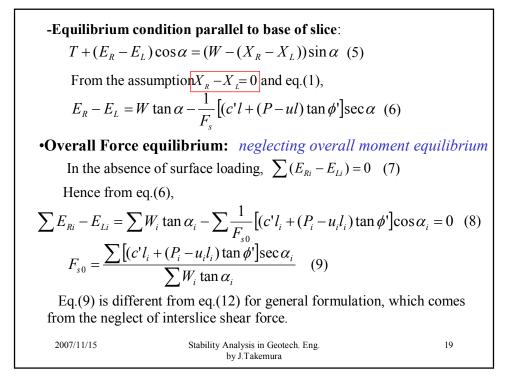

2007/11/15

Stability Analysis in Geotech. Eng. by J.Takemura

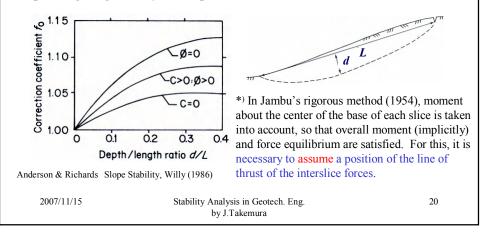

General Formulation on Limit Equilibrium on MS Failure is assumed to occur by sliding of (assumed centre of rotation) d a block on a non-circular (or circular) slip surface. R Soil properties: c', ϕ', γ •For a slice at its base with normal stress σ ER shear stress τ and pore pressure *u* -Failure criteria: $\tau_f = c' + (\sigma - u) \tan \phi'$ (1) -Mobilized shear strength $\tau = \tau_f / F_s$ since $P = \sigma l$, $T = \tau l$, $T = \frac{1}{F_c} (c'l + (P - ul) \tan \phi')$ (2) 2007/11/15 Stability Analysis in Geotech. Eng. 10 by J.Takemura



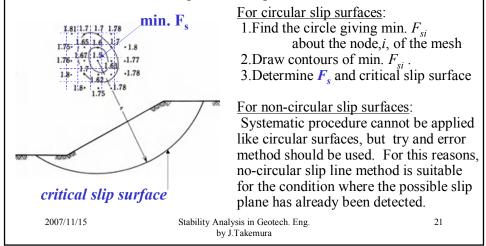

•Overall Moment equilibrium (about O):(土塊全体のモーメントの釣合) $\sum W_i d_i = \sum T_i R_i + \sum P_i f_i \quad (7)$ By substituting eqs.(2) and (4) into eq.(7) and rearranging, $\underbrace{F_{sm}}_{F_{sm}} = \frac{\sum [c'l_i + (P_i - u_i l_i) \tan \phi'] R_i}{\sum (W_i d_i - P_i f_i)} \quad (8)$ factor of safety satisfying overall moment equilibrium For circular slip surfaces f=0, d=Rsin α and R=cosnt, so $F_{sm} = \frac{\sum [c'l_i + (P_i - u_i l_i) \tan \phi']}{\sum W \sin \alpha_i} \quad (9)$ Eqs. (8) and (9) are *nonliner equations* about F_{sm} , because P includes F_s . See eq.(4). Their solutions necessitate an iterative procedure. 2007/11/15 Stability Analysis in Geotech. Eng. by J.Takemura 12

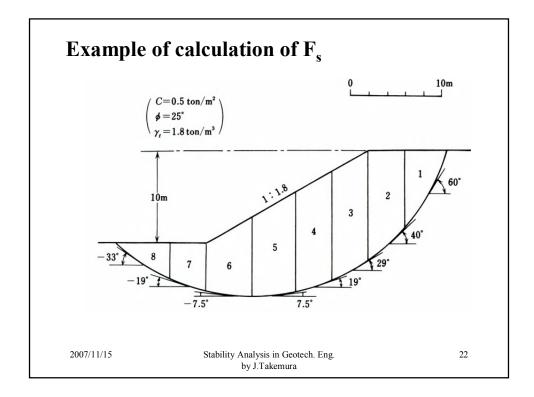


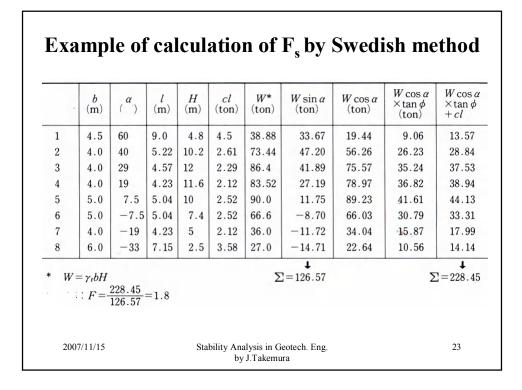
Common as	sumptions on interslice shear	forces
$X_{R} - X_{L} = 0$:Bishop (1955) +neglecting F_{sf}	
	Jambu's simplified(1956) + neglecting F_{sm} with non-circul	ar slip surface
$\frac{X}{E} = \tan \theta = cons$	st. :Spencer (1967) + θ satisfying F_{st}	$n = F_{sf}$
$\frac{X}{E} = \lambda f(x)$:Mogenstern and Price (1965) + for given $f(x)$ the scaling factor satisfying $F_{sm} = F_{sf}$.	λ is found
2007/11/15	Stability Analysis in Geotech. Eng. by J.Takemura	14



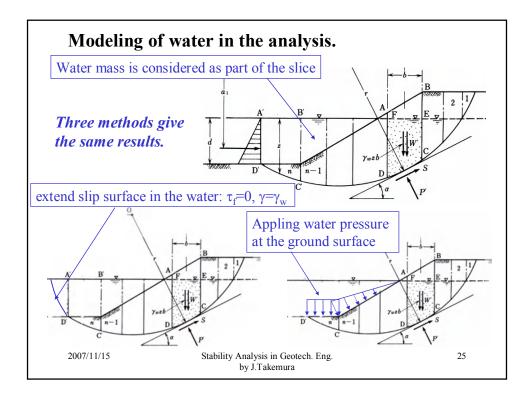
To take account of the interslice shear forces, Jambu et al. applied correction factor f_0 and gave the factor of safety F_{sf} by the following equation.

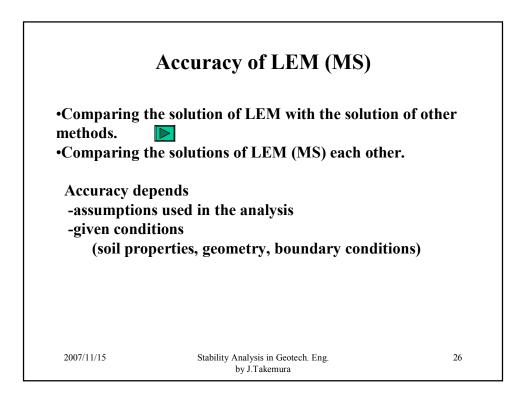

$$F_{sf} = f_0 F_{s0} \quad (10)$$

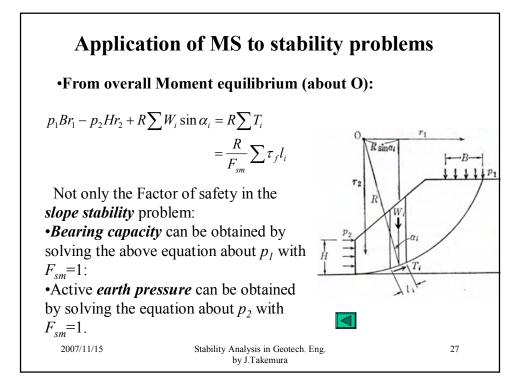

The correction factor f_0 was obtained by calibrating this analysis with Jambu's rigorous method^{*)}. The f_0 may be obtained from the figure below, depending on geometry of the problem as well as the soil conditions.

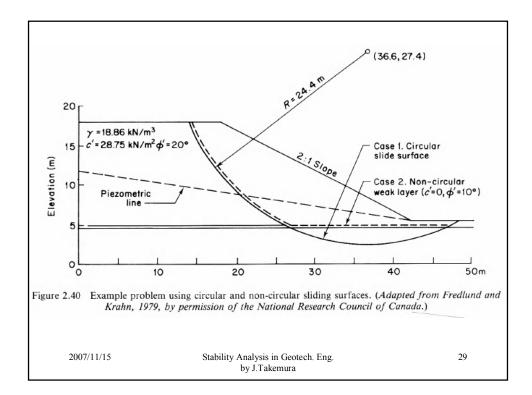


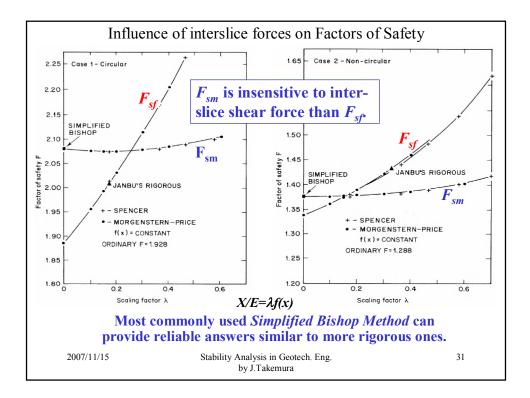
Minimization of F_s

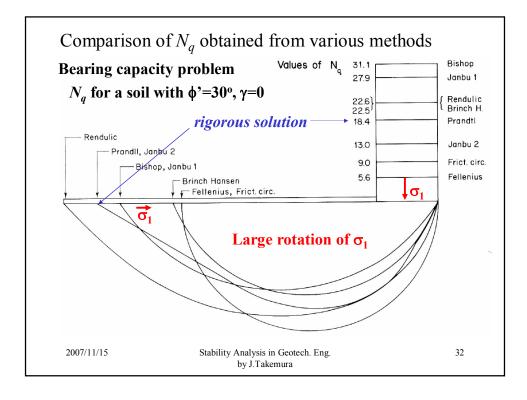

The equations on F_s given above are for one arbitrary trial slip surface. As adopted in normal UBA and LEM, the slip surface which gives minimum F_s is detected in a design. This is the factor of safety that should be used in the design with the given conditions.



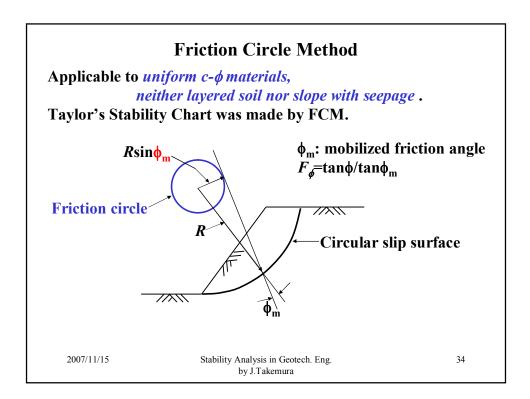


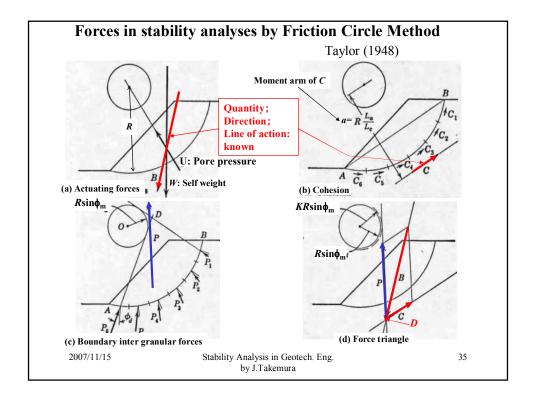

	- 		ulation		firs	t appr	oxima	tion of	f F _s	
Slice	cb	W tan ϕ W tan		$W \tan \phi$ $F = 1.80$		F =	F=2.15		F=2.17	
No.	(ton)	(ton)	+cb (ton)	ma	Δ/m_{a}	ma	Δ/m_a	ma	∆/m.	
1	2.25	18.13	20.38	0.724	28.14	0.688	29.63	0.686	29.70	
2	2.0	34.25	36.25	0.933	38.85	0.905	40.03	0.904	40.09	
3	2.0	40.29	42.29	1.00	42.29	0.980	43.16	0.979	43.21	
4	2.0	38.95	40.95	1.030	39.76	1.016	40.30	1.015	40.33	
5	2.5	41.97	44.47	1.025	43.39	1.020	43.61	1.020	43.62	
6	2.5	31.06	33.56	0.958	35.03	0.963	34.84	0.963	34.84	
7	2.0	16.79	18.79	0.861	21.82	0.875	21.44	0.876	21.46	
8	3.0	12.59	15.59	0.698	22.34	0.721	21.64	0.722	21.59	
1 st trial	1 st trial : $F = \frac{271.62}{126.57} = 2.15$ $\Sigma = 271.62$ $\Sigma = 274.65$ $\Sigma = 274.$							↓ =274.8		
	4	$\frac{274.65}{26.57} = 2.1$		nverge	nco in	itorat	ion is	auite d	boot	
3 rd trial	$: F = \frac{2}{3}$	$\frac{74.84}{26.57} = 2.1$	7	iverge	nce in	uerui	ion is	yune e	;00 <i>u</i> .	

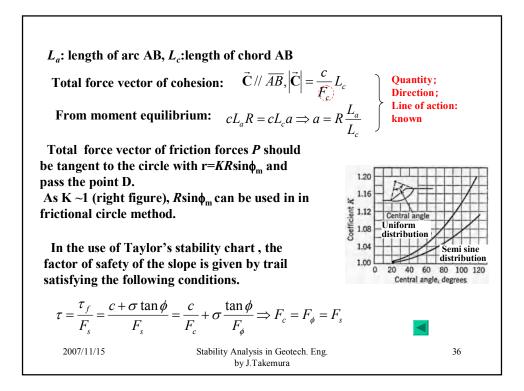




				Limit equilibriu	n	limit analysis
	Slope angle β (°)	Friction angle ϕ (°)	slices	¢ circle	logspiral	logspiral
	90	0	3.83	3.83	3.83	3.83
		5	4.19	4.19	4.19	4.19
		15	5.02	5.02		5.02
		25	6.06	6.06	6.06	6.06
	75	0	4.57	4.57	4.57	4.56
		5	5.13		4.07	5.14
		15	6.49			6.57
		25	8.48	8.54		8.58
1	60	0	5.24	5.24	5.24	5.25
/		5	6.06	6.18	6.18	6.16
/		15	8.33	8.63	8.63	8.63
/		25	12.20	12.65	12.82	12.74
1	45	0	5.88	5.88*	5.88*	5.53*
🖌 log spiral		5	7.09	7.36		7.35
failure sui	face	15	11.77	12.04		12.05
		25	20.83	22.73		22.90
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.53*				
			8.77*	9.09*		9.13*
			20.84	21.74		21.69
		25	83.34	111.1	125.0	119.93
	15	0	6.90*	6.90*	6.90*	5.53*
		5	13.89*	14.71*	14.71*	14.38*
		10		43.62		45.49
	*Critical failure surfa	ace passes below toe.				




Case no. Example problem*	0.5	F _{sm} Simplified	Spencer's method			F _{sf} Janbu's	Janbu's	Morgenstern- Price method $f(x) = constant$		
	Example problem*	Ordinary method	Bishop method	F	θ	λ	 simplified method 	rigorous method [†]	F	λ
	Simple 2:1 slope, 12 m high, $\phi' = 20^\circ$, $c' = 28.75$ kPa	1.928	2.080	2.073	14.81	0.237	2.041	2.008	2.076	0.254
2	Same as 1 with a thin, weak layer with $\phi' = 10^\circ$, $c' = 0$	1.288	1.377	1.373	10.49	0.185	1.448	1.432	i.378	0.159
\$	Same as 1 except with $r_{\mu} = 0.25$	1.607	1.766	1.761	14.33	0.255	1.735	1.708	1.765	0.244
ł	Same as 2 except with $r_u = 0.25$ for both materials	1.029	1.124	1.118	7.93	0.139	1.191	1.162	1.124	0.116
	Same as 1 except with a piezometric line	1.693	1.834	1.830	13.87	0.247	1.827	1.776	1.833	0.234
	Same as 2 except with a piezometric line for both materials	1.171	1.248	1.245	6.88	0.121	1.333	1.298	1.250	0.097



		Und	erestima	ite		
Author	Method	Rupture Line	Nq	% N _{qPrandtl}	$F = \frac{\tan 30^{\circ}}{\tan \phi'_{\rm m}}$	
Fellenius	Slices	Circle	5.6	31	0.58	
Krey	Friction Circle	Circle	9.0	49	0.75	
Janbu <i>et al.</i>	Slices	Prandtl	13.0	71	$0.88 \times 1.05 = 0.92$	
Prandtl	Plasticity	Prandtl	18.4	100	1.0	
Brinch Hansen	Equilibrium	Circle	22.5	113	1.07	
Rendulic	Extreme	Spiral	22.6	114	1.07	
Janbu <i>et al</i> .	Slices	Circle	27.9 📌	151	$1.15 \times 1.05 = 1.21$	
Bishop	Slices	Circle	31.1	169	1.19	
Figure 2.39 Com	Hansen, 1966, by p	bacity factors de bermission of the verestima	he Danish Ge	different me eotechnical I	thods. (Adapted from a nstitute.)	Brin
If the s	lip surface is s	steenly ind	clined at	the toe	a method	
should b	e chosen whic	ch gives a	sensitiv	e distrib	ution of	
interslic	e forces.					
,					33	
2007/11/15		Stability Analysis	in Geotech E	ng.	.1.1	

